

Programming with

An introduction

KES Summer 2023

v1.1

2 | P a g e

Contents
Introduction .. 3

What is C#? ... 3

Visual Studio.. 4

Item properties ... 4

Project files ... 4

Syntax errors ... 4

Code editor ... 4

Basic Data types .. 10

Variables ... 11

Getting user input ... 13

Strings ... 17

Building a User Interface (UI) .. 28

A bit of maths .. 44

Selection .. 60

Why use an array .. 74

Iteration .. 77

Logical Operators .. 86

Advanced strings and loops .. 94

Subroutines - Creating a program structure ... 98

Exception handling .. 106

Robust subroutine code .. 113

Putting it all together – Complete code example ... 118

Resources .. 126

file://///kggs.internal/files/RMStaff/ICT%20and%20Computing/_KS4/C%23_Toc501357173
file://///kggs.internal/files/RMStaff/ICT%20and%20Computing/_KS4/C%23_Toc501357174
file://///kggs.internal/files/RMStaff/ICT%20and%20Computing/_KS4/C%23_Toc501357175
file://///kggs.internal/files/RMStaff/ICT%20and%20Computing/_KS4/C%23_Toc501357176

3 | P a g e

Introduction

This book will focus on developing programming skills and will go through the core concepts of

syntax and the main building blocks of programming, which are sequence, selection and iteration.

The algorithms for each program will be described using pseudo code, so that you can try the

programs with other languages in the future if you wish.

What is C#?

C# is a high-level programming language developed by Microsoft and is part of the .NET framework.

The idea behind a software framework is to group all the tools together to help a programmer

become more productive. It contains a large code library to help you with common tasks; this allows

you to rapidly develop software applications. C# is considered to be similar to Java and other

modern programming languages.

With C# you can create:

 Windows applications

 Dynamic web pages

 Mobile applications

 Games

 Data manipulation applications

 Simulations e.g. science

4 | P a g e

Visual Studio

Visual Studio is a software application for writing software. It provides a range of tools to help

developers create and test their software.

Code

editor

Syntax

errors

Project

files

Item

properties

5 | P a g e

Getting started

Writing your first program

The best way to learn programming is to program, so let’s create a simple text based program using

Visual Studio with C#.

1. Create a new project

2. C# console application

3. A C# console application is the simplest type of program and will produce a text based

program.

a) Choose Visual C#, Windows Classic Desktop

b) Console Application (.NET Framework)

c) Change the name to ‘ConsoleApp - Hello World’

d) Select OK to create

6 | P a g e

Structure of a C# program

Visual Studio will create all the necessary code for you to begin. You don’t need to worry about

most of this for now, just where to type your code, which is where 5 is.

1. The using statements are called directives. They tell the program which pre-made code

library namespaces are needed. For now, allow Visual Studio to manage this for you.

For example, the using System directive allows the user to interact with the program using

the pre-built library code provided e.g. WriteLine()

2. A namespace is used to group code together in a name given by the programmer

3. The class section is used to group code statements together, the programmer can name and

categorise each section of the code. This will be explained later.

4. The Main() section is called a method and is where the program starts.

5. The {} curly brackets is where you will type you code. The code will run in sequence from line

12.

7 | P a g e

Intellisense

Typing code into Visual Studio is easy once you get started.

Just start typing and choose what you want from the list, this is the intellisense feature.

Activity 1 : Code Time

1. Type the following code:

2. Press to run the code

3. There is an error, so you will get a message. Press NO

4. An error list will appear at the bottom, you are missing a ;

8 | P a g e

5. Double click on the error line and the cursor will jump to the correct place.

You may have noticed a red ~ this is where the error was

6. Type a ; to complete the code and the line below

7. Press to run the code

8. It should run and show you:

9. Press enter to close the program.

9 | P a g e

Activity 1 : Code sense

Great! It worked but what did it do?

Here is a brief explanation:

Activity 1 : Code comments

It is good practise to add comments to you program so other know what it is doing or just for your

own benefit.

// is how you tell C# that it is a comment and not to run it as code.

Add comments to you program

Well done, you have created your first program.

Displays Hello World on the screen

Pauses the program by waiting for the user to

press a key

10 | P a g e

Basic Data types

Now you have written your first program lets explore some key concepts. When programming, you

will be working with different types of data. All programming languages can use different data types

and the common ones are:

Integer

An integer is a whole
number (no fractional
parts).

For example:

1, 2, 125, 4280, -134

In C# this is defined as:

int

Memory usage:

4 bytes

Real or Float

Real or floating point
numbers have a
decimal place and can
represent a fraction.

For example:

12.8, 128.967, -1.2342

In C# this is defined as:

float

Memory usage:

8 bytes

Char or Character

Char stands for
character; a character
is a letter, punctuation
mark, symbol or digit.

For example:

‘A’, ‘b’, ‘?’, ‘@’, ‘4’

In C# this is defined as:

char

Memory usage:

1 byte per character

String

A string is a piece of
text, multiple
characters strung
together.

Actually a string can be
zero (empty), one or
more characters.

For example:

“” (empty)

“Hello world!”

“H”

In C# this is defined as:

string

Memory usage:

1 byte per character

Boolean

A Boolean can only
store true or false

For example:

true

false

In C# this is defined as:

bool

Memory usage:

1 byte

11 | P a g e

Variables

A variable is a named location in memory. Variables are used to store values that are being used by

the program in a computers memory. When a program runs it can store, change and access the data.

Identifier

A variable can be identified by its name or identifier. When asked for the identifier for a variable you

are being asked for its name.

Programming languages have rules for naming variables.

Naming variables

Variable names in C# must follow these rules:

1. The first character cannot be a number

2. There cannot be spaces between words

3. The name can only contain letters, numbers or underscores (_)

4. The name cannot use certain reserved words e.g. Console, namespace, class, if, for, while

and many more

5. The name is case SEnSiTIVE e.g. userage is not the same as USERAGE or userAge

Naming conventions

Although not a rule, there are two main methods that programmers use to name variables when

using multiple words (see rule 2):

Camel case

When using camel case (because it has humps!) the first letter is lowercase, and then each following

word is capitalised:

 userName

 numberOfAttendees

Underscore (_)

When using the underscore method again all words are lowercase but are joined by an underscore:

 user_name

 number_of_attendees

12 | P a g e

Setting up C# variables

It is important to plan your programs before writing the code, especially the variables. You need to

consider how they will be used and what data types will be needed.

When setting up or declaring a variable in C#, you need to:

1. identify the data type

 int, float, char, string or bool

2. provide an identifier

 Use the naming rules and conventions

3. assign an initial value

 This can be zero or an empty string “” ready to store a new value as the program

runs

Assigning a value

When you give a value to a variable it is called assigning a value. Some languages require a value to

be given to a variable when it is initially setup, this is called initialisation.

In pseudocode the symbol is used to indicate when to assign a value to a variable, for example:

total 0

Note: In pseudocode the = symbol means make a comparison.

In C# values are assigned using the = symbol

Examples

Note: A float data type requires

an f after the value.

This is to tell C# to store

the number as a floating

point decimal format.

C# can store decimals in

different formats, like a

double.

13 | P a g e

Getting user input

Now that you have written your first program and (hopefully) understand what is going on, let’s get

the user involved.

Input, Process and Output

When programming I like think about the program in simple terms, namely;

Input, Process and Output.

This will help you plan your programs.

This idea can also be used differently later when you are using more complex programming

techniques.

PROCESS INPUT OUTPUT

14 | P a g e

Activity 2 : User Input to UPPERCASE

The following program will take in a user input as string, make it upper case and output it to screen.

I-P-O diagram

Here is a simple Input-Process-Output diagram to describe the program, it gives a simple overview,

rather than how to write the program.

Pseudocode

Here is a pseudocode version of the same program, as you can see it is a guide on how the program

could be written.

This design is then applied to the language of your choice, in this case C#.

OUTPUT “Hello, please enter a word: “

wordUserInput USERINPUT

#Change the word to upper using a built-in function / method

wordUpper UPPER(word)

OUTPUT “The word entered is now uppercase: “

OUTPUT wordUpper

PROCESS

Convert string to

UPPERCASE

INPUT OUTPUT
User input

- string

Display

uppercase

string

15 | P a g e

Activity 2 : Code time

1. Create a new project

2. C# console application

3. A C# console application is the simplest type of program and will produce a text based

program.

a) Choose Visual C#, Windows

b) Console Application

c) Change the name to ‘ConsoleApp - User input to uppercase’

d) Select OK to create

4. Type the following code:

e) Press to run the code

5. If there are errors, check your syntax, fix and try again.

Common errors:

a) Not initialising a variable with a value e.g. wordUserInput = “”

b) Forgetting to end each statement with a ;

c) Forgetting to add a second “ or)

d) Not adding () to the end of a function/method e.g. ToUpper()

e) Deleting the closing } at the end of the program

16 | P a g e

6. It should run and shown you first simple program.

7. Press enter to close the program.

Activity 2 : Code sense

Super! It worked but what did it do?

Here is a brief explanation:

Note: Console.Readline() always reads the user input as a string, even if they enter an integer!

More on this later.

Set up two string variables and initialise with

an empty string value “”

Display “Please enter a word” on screen

and keep cursor on the same line

Pauses the program by waiting for the user to

press a key, before closing the program

Read a line of characters input by the user and

store the value in the worduserInput variable

Convert the value in the worduserInput

variable to UPPERCASE and store in the

wordUpper variable

Display “the word entered is now uppercase: ” and move the cursor down a line

Display the value of the wordUpper variable

on screen

17 | P a g e

Activity 2 : Code comments

Use // to add comments to your code to help you in the future.

Don’t forget to save!

Strings

A string is a piece of text, multiple characters strung together, they can be a single word, multiple

words with spaces or empty.

Strings are a vital part of many programs and come with many properties and built-in functions /

methods that can use used.

Assigning a string to a variable

You have already done this but a quick recap might be useful.

To assign a string to a variable first the variable must be setup (declared) and then assigned a value

using the = symbol.

Initialise a variable

You can initialise a variable by assigning an empty string:

You can initialise a variable by assigning a string value:

Update a variable

You can also update a string with another value by using the = symbol again:

18 | P a g e

Finding the length of a string

Strings have properties available and one of those is its Length.

The Length function / method can be used in the following ways, but is most commonly used with a

variable.

Directly with a string

Output:

Using a variable containing a string value

Output:

Note: .Length is a property and not a method so doesn’t need () after the key word.

19 | P a g e

String index

Every character within a string has a position number, which is known as the index. The number

starts at zero.

0 1 2 3 4 5 6 7 8 9

P r o g r a m m e r

The index of a string can be used in various ways and works well with variables.

To identify a letter from a string VariableName[index Number] is used.

Example

Even though “Programmer” has 10 letters, the index starts at 0 and ends at 9. Be careful!

Note: The error IndexOutofRangeException means that the code asked for an index value of

10, which is beyond the size or range of the index positions 1-9. Simply put there isn’t an

index position 10.

index

String

20 | P a g e

Ways of Using the string index

Here are two alternative ways of using the index position in a program.

Using variables to store the result

Using a variable to store a character is useful if you need to use the result again later in the program.

Straight to output

Sometimes you might just want to output the result once, here you could consider producing the

result directly in Console.WriteLine().

Joining strings together

String concatenation

Joining two strings together is called concatenation.

The concatenate symbol (+) can be used to join two strings or two variables that contain strings.

Example

Did you notice the data type?

In C# a variable with single character is a char

21 | P a g e

Joining strings with other data types

In this example the noHorns variable is an integer. It works no problem.

Place holders

Placeholders and strings

Strings can also be constructed by using place holders, slightly more complex to use but very

powerful.

Placeholders use an index number and work in a very similar way to a string index with

{indexNumber} being used to identify where to place each variable in the string.

Example

Placeholders and numbers

When using a number in a string they can be formatted using a place holder. Here is an example

changing the number of decimal places.

 {0} {1}

index number

 index number 0 : Floating point 3 decimal places

22 | P a g e

Escape characters

Escape characters are used to format or output special characters that don’t work as expected

unless given extra information.

To allow certain characters to display a backslash (\) needs to be added.

Single or Double quotes

Backslash

Newline

Tab

23 | P a g e

Finding part of a string

Finding part of a string is also known as a substring.

0 1 2 3 4 5 6 7 8 9

P r o g r a m m e r

As you know, every character within a string has a position number, which is known as the index.

Instead of just getting a single character, multiple characters can be extracted by giving an index

start and index end position.

A finding a string inside a string

Sometimes you want to check inside a string to see if another string is part of the text.

Comparisons are case sensitive and can be made between two variables or a variable and string

value.

 String.Contains(“stringToFind”) will return true or false, depending whether the string is found.

Note: False occurs because “other” is all lowercase whereas “Other” has a capital “O”.

index

String

. Substring(IndexStart, indexEnd)

24 | P a g e

Comparing strings

Sometimes you may need to compare two strings to see if they are match or not. C# provides a

function / method to help you do this.

Comparisons are case sensitive and can be made between two variables or a variable and string

value.

 If a match is found it will output true, if not false.

25 | P a g e

Changing data type aka Type Casting

If you remember from before when getting user input it is always a string. This is fine if you want to

output this number to a string. Often, this is not the case and you will want to use the input as an

integer to perform a calculation.

Example that doesn’t work

The following example doesn’t work as even though the people variable is a number.

Example that does work

Did you spot the difference? the function / method int.Parse() analyses at the user input and

checks to see if it can be change into an integer.

Parse can also be used with float, double and decimal.

error!

This means that C# cannot

automatically change a string to an

integer

26 | P a g e

Practice Activity: Write a short story

Write a short story with a basic structure but ask the user to fill in some gaps. Don’t make it

too complicated but this is your chance to use your imagination and be creative.

The story should ask a user to:

 Identify a character type e.g. giant, unicorn, werewolf, sponge

 Give the character a name, Title, forename and surname

 Identify the age of the character as an integer

 Add any other parts of the story that you would like to ask the user

The story should:

 Store the user input in variables of the correct data type

 Join strings together using concatenation, placeholders or both

 Use an escape character

 Use part of a string (substring)

 Use type casting to convert a user input to a number

27 | P a g e

Don’t forget to plan you program

I-P-O

Pseudocode

Here is a possible starting point.

OUTPUT “Please enter a type of fictional animal: “

fictionalAnimal USERINPUT

 etc.…

#Change to upper using a built-in function / method

fictionalAnimalUpper UPPER(fictionalAnimal)

etc.…

OUTPUT “Once there was a “ + fictionalAnimal

OUTPUT “That used to like shouting. ”

#Display a double quote using an escape character

OUTPUT “\”I am a ” + fictionalAnimalUpper + “\””

 etc.…

PROCESS

 INPUT OUTPUT

28 | P a g e

Building a User Interface (UI)

In this section you will build you first user interface. The type of software application that most users

will be familiar with have a user interface designed to make using the application easier. A UI is

how the user and a computer system interact

Designing a user interface is an entire topic on it’s own, you will just cover the basics.

Examples

Operating System Graphical User Interface (GUI)

Windows 98 Windows 7

Windows 10

29 | P a g e

Smartphone Operating System GUI

Apple IOS Windows 10 Phone Google Android

Software Applications Common UI Controls

30 | P a g e

Activity: Once Upon a time App

The best way to learn how to build a UI is to do it!

1. Create a new project

2. C# WPF application

3. A C# WPF application is a type of program and will produce a program with a window.

a) Choose Visual C#, Windows Classic Desktop

b) WPF App (.NET Framework)

c) Change the name to ‘WpfApp - Once Upon’

d) Select OK to create

4. The WPF application will be created.

31 | P a g e

Development structure of a C# Windows Presentation Foundation (WPF)

Visual Studio will create all the necessary code for you to begin. You don’t need to worry about

some of the parts given to you now.

You will be working with:

a) Window designer

 Drag and drop controls to create your windows application

b) Toolbox

 All the controls you can use e.g. label, button, checkbox

c) Properties

 Information about each control e.g. name, contents, size colour

d) XAML

 This is for advanced developers, let Visual Studio handle do this for you

 Collapse the pane for now to create more space

32 | P a g e

The anatomy of a window

The window created in a WPF application is made up of two main parts.

a) MainWindow

a. The window presents and contains the content and allows the user to interact

b) Grid

a. The grid allows you to place and organise controls in the content area of the window

Note: If you delete the grid you cannot place controls, so be careful!

What is XAML?

XAML is similar to HTML is the respect that it can be used to define the content and behaviour of the

window, grid and controls.

The XAML mark-up is created when you drag and drop controls onto the grid. If you wanted, you

could type the XAML definition. Just let Visual Studio handle this for now, when you become more

confident you might just type your own definitions.

Example XAML for a button:

33 | P a g e

Setting up the main window

It is always good practise to name objects, let’s start with the main window.

1. Select the MainWindow, click on the grey area

2. The MainWindow properties will appear

3. Update the properties

a. Name:

 Give the MainWindow a name ‘Once Upon a Time’

 This is how the program will know which window to work with

 The window Eventually in larger applications you will have more than one

window

b. Common > Title:

 Give the window a title ‘Once Upon a Time’

 This is what the user will see

34 | P a g e

Adding a label

Labels can be used to give instructions to the user and for outputting

text.

1. Select label from the Toolbox

2. Drag and drop the label onto the window

3. The label properties will appear

4. Update the label properties

a. Name:

 Give the label a name ‘labelCharacter’

 This is how the program will know which label to work with

b. Common > Content:

 Give the label the content of ‘Enter character type’

 This is what will appear in the label

c. Common > ToolTip:

 Give the ToolTip the content of ‘giant, witch, sponge etc.’

 This is what will popup when a user hovers over the label

5. Press to test what the form looks like. Close once tested.

35 | P a g e

Adding a text box

Text boxes are used to get an input from the user.

1. Select TextBox from the Toolbox

2. Drag and drop the TextBox onto the window, next

to the label

3. The TextBox properties will appear

4. Update the TextBox properties

a. Name:

 Give the TextBox a name ‘textBoxInputCharacter’

 This is how the program will know which TextBox to work with

b. Common > Text:

 Delete the TextBox text so that it is blank

 This is where the user will type

c. Common > ToolTip:

 Give the ToolTip the content of ‘Enter the type of character here’

 This is what will popup when a user hovers over the TextBox

5. Press to test what the form looks like. Close once tested.

36 | P a g e

Adding a label and textbox

Repeat the steps above to add a label and textbox for the following:

1. Label properties

a. Name:

 Give the label a name ‘labelMood’

b. Common > Content:

 Give the label the value of ‘Enter the character mood’

c. Common > ToolTip:

 Give the ToolTip the content of ‘happy, sad, grumpy, etc.’

2. TextBox properties

a. Name:

 Give the TextBox a name ‘textBoxInputMood’

b. Common > Text:

 Delete the TextBox text so that it is blank

c. Common > ToolTip:

 Give the ToolTip the content of ‘Enter the character mood here’

For example:

37 | P a g e

Adding a button

Buttons are used to trigger events, when the button is pressed the code you are going to write will

be executed.

1. Select TextBox from the Toolbox

2. Drag and drop the Button onto the window

3. The TextBox properties will appear

4. Update the Button properties

a. Name:

 Give the Button a name ‘buttonMakeStory’

 This is how the program will know which button to work with and what to call

the event in the code.

b. Common > Content:

 Give the Button label the value of ‘Make Story’

 This is the button label

c. Common > ToolTip:

 Give the Button ToolTip the content of ‘Click here to create your story’

 This is what will popup when a user hovers over the Button

5. Press to test what the form looks like. Close once tested.

38 | P a g e

Creating the button event code

When the button is clicked, this will trigger the event that runs the code. Visual Studio will help you

create the code to get you started.

The code you will create is similar to the console application that you created earlier but adapted to

work with a button.

1. Double click on the button to create the button event code starting point

2. The code you will create will only run when the ‘Make Story’ button is clicked.

39 | P a g e

Coding control properties - making a string appear

To get started you will need to understand a bit about how the control properties.

Each control property behaves a bit like a variable, you can store and change information held in

them. BUT you must access them in a specific way, this is why each control was given a unique

name.

Add a new label

1. Go to the MainWindow.xaml

2. Drag and drop a textBlock below the button

 Use a textBlock because the text will wrap around automatically

3. Update the textBlock propertiest

a. Name:

 Give the textBlock a name ‘textBlockStoryOutput’

b. Common > Text:

 Delete the TextBlock the text, the label is still there but empty

 The code you create will update the content

Adding the code

You will need to know how the textBlock is named to call it in the code.

 Luckily if you followed the naming example this is easy, intellisense helps you:

1. Type the following code, or your version of it.

2. Press start and press the button to make the string appear.

40 | P a g e

Code sense

a) This is the button event starting point

b) This is the name of the TextBlock control

c) This is the TextBlock control property that will given a value

d) This is the string value that will appear when the button is pressed

Improving the code

At the moment the labelStoryOutput has a fixed string given to it. The next step is to get the user to

enter the string value.

There are different ways of doing this, you will use a variable in a very similar way to the earlier

console program. This allows you more flexibility with your code.

1. Type/edit this code.

2. Press start and press the button to make the string appear.

41 | P a g e

Code sense

a) This is the button event starting point

b) This is the name of the string variable

c) This is the name of the textBox control to get the string value from

d) This is the property of the Textbox control that stores the value typed by the user

e) This is the button event starting point

f) This is the name of the textBlock control

g) This is the textBlock control property that will given a value

e) This is the string value that will appear when the button is pressed, in this case the variable

value

42 | P a g e

Finishing the code

Time to finish the story code.

 Type/edit this code.

 Press start and press the button to make finished application appear.

 Finally, add comments to your code.

o The string.Format() function/method was used so that placeholders can be used. It

is written on two lines to make it fit on the page.

43 | P a g e

Practice Activity: Write a short story UI

 Design and create a WPF UI for your short story.

 Use your short story console code as a starting point, edit the code to make it work

with the WPF User Interface.

 Once finished investigate how to add images to the WPF.

Hint: Save the image to the same folder as you project

Note: You might find it helpful to design your application on paper before you begin.

44 | P a g e

A bit of maths

Different types of numbers are used in many programs and it is important for you to know how to

work with them in C#.

Types of number

To be able to work with numbers you will need to recognise the most common number data types.

You will typically use an int, float or double but other types are included.

C# stores numbers in a binary format so 42 in 8-bit binary is 00101010; this is not obvious unless

you have some experience with computer science.

Type Description + and -

int 32-bit signed integer Yes

float 32-bit single-precision floating point number Yes

double 64-bit double-precision floating point number Yes

decimal 128-bit decimal with 28 significant digits Yes

long 64-bit signed integer Yes

short 16-bit signed integer Yes

byte 8-bit unsigned integer No

Signed and unsigned integers

Both positive and negative numbers may need to be stored and this is when signed and unsigned

numbers become important.

 Unsigned = only positive numbers, greater than or equal to zero

 Signed = Both positive and negative numbers

In a signed (negative) binary number, the first bit indicates whether it is a negative number.

 42 in 8-bit binary is 00101010

 -42 in 8-bit binary is 10101010

45 | P a g e

bit size

The number of bits indicates the size of the number that can be stored. The more bits the larger the

number or more precise, if dealing with fractional numbers.

Bits Unsigned (+) Signed (- and +)

8 0 to 255 -128 to 127

32 0 to 4,294,967,295 -2,147,483,648 to 2,147,483,647

64
0 to

18,446,744,073,709,551,615
-9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

Note: signed numbers, which use the most significant bit (MSB) method, use the first bit

to indicate whether the number is positive of negative and not to represent a

number, so have a smaller range of numbers.

Finding the range of numbers

Luckily C# provides you with a way to find the range of numbers. You never know, when you might

need to!

Use the numberType.MaxValue or numberType.MinValue, for example:

46 | P a g e

Operators

C# can perform any calculation you need but before you try you will need to know what operators to

user.

Mathematical
Operation

Maths
Operator

Maths example C# Operator C# Example

Addition + 4 + 4 = 8 + 4 + 4 = 8

Subtraction - 4 - 4 = 0 - 8 - 4 = 4

Multiplication * 4 * 2 = 8 * 4 * 2 = 8

To the power of Xy
83 (8*8*8)= 512 None Math.Pow(8,3) = 512

Division /
8 / 2 = 4

5 / 2 = 2.5 /
8 / 2 = 4

5 / 2 = 2.5

Modulus (remainder) %
8 % 2 = 0
5 % 2 = 1 %

8 % 2 = 0
5 % 2 = 1

Simple calculations

Let’s do some simple calculations in C#.

Create a C# console application called ConsoleABitofMaths.

Try the code for each section

47 | P a g e

Addition

Addition with an int

Adding a float using an int

Adding a float using a float

Adding an int using a float

Will cause a type error

48 | P a g e

Subtraction

Subtraction with an int

Subtracting a float using an int

Subtracting a float using a float

Will cause an type error

49 | P a g e

Multiplication

Multiplication with an int

Multiplying with a float using an int

Multiplying with a float using a float

Multiplying with a double

A double datatype is much more forgiving than a float. You can use either an int or float value

without saying which and it will just work!

Will cause a type error

50 | P a g e

Conclusion

 If you are expecting result with a float type of number, use a float datatype.

 If you are not sure if you might get a result with a fraction, use a double datatype to be

safe.

 If you are always working with whole numbers (integers) then use an int datatype.

51 | P a g e

To the power of

The exponent of a number says how many times to use the number in a multiplication.

63 is the same as writing 6*6*, using the exponent of 3 written as 63 makes this easier to write.

As can be seen, C# tells us that Math.Pow() produces a datatype of double. This is like a float but

with double the accuracy (precision).

Int variable and exponent

Double variable and int or float exponent

Will cause a type error, as an int is not a double

52 | P a g e

Division

Division of an int

Dividing with a float result

Dividing with a double result

Float or Double

 If you know you are always going to be given a float value then use a float.

 If you could be given a float or integer value use a double.

You must specify the divisor to be a

float datatype to get a float result

There is no requirement to identify the

divisor type. This makes double more

flexible that using float.

53 | P a g e

Modulo

Modulo is used to find the remainder of a division operation.

Using the modulus operator

5 % 2 = 1 2 goes into 5 twice but leaves 1 remaining, this is modulus, finding the remainder.

Modulo of an int

Modulo with a float

Modulo with a double

NO NEED to specify the datatype

The remainder is

You must specify the modulo to be a

float datatype to get a float result

54 | P a g e

Randomness

It is quite common in programs to require random numbers to be generated. Luckily, C# has a built-

in class for doing that.

Remember using the string.Contains() method, random works in a similar way. Just treat it the same

way for now!

A class is a bit more complex than a simple built-in method, it will create something called an object,

the object is then used by the .method.

Random number generated

55 | P a g e

User Input

So far you have not been getting user input, just using C# as a calculator. As you know user input is a

string, this is a problem.

C# is very particular about data types and you can’t put a string value into an int or float variable.

Parse the string

Parsing is when an item is analysed to identify (its parts) what it is, so when parsing a string it is first

checked to see if it can be changed into another datatype.

It is common to want an integer input and then do something with it, like multiply.

String errors

String casting

Changing the datatype is also called casting in programming but in C#, parsing is the technique used.

Will cause a type error

56 | P a g e

User Interface and casting

When using WPF the textBox input provides a string, so the datatype needs to be changed if it is

required to behave like a number.

The following example multiplies two numbers, converts the textBox to an integer, performs a

calculation and then converts the result back to a string to be displayed in a textBox.

User Interface

Button code

57 | P a g e

Activity: Simple integer calculator UI

In this activity you will build a simple calculator UI that takes in two numbers and performs different

calculations.

You will need to look at the prior sections and apply what you have learnt to the task.

User Interface (UI) design

It is always good to have a bit of a think about the design of you user interface. Just a quick sketch

will do.

58 | P a g e

I-P-O

Pseudo Code

Please note the pseudocode doesn’t try to explain how the user interface will work just the main

steps required for the code.

It is up to you as the developer to work out how to create the UI and make the code work.

#Get user input

firstNumber USERINPUT

firstNumber USERINPUT

#Process results

addResult = firstNumber + secondNumber

subResult = firstNumber - secondNumber

#Output results

OUTPUT “addResult”

OUTPUT “subResult”

INPUT OUTPUT

number1

(integer)

Number2

(integer)

Addition

Number1 + Number2

Subtraction

Number1 - Number2

Addition result

Subtraction result

59 | P a g e

Activity: Simple double calculator

Save a copy of the simple integer calculator project and change the input and

output variables to be a double.

Try using numbers with a decimal and see what happens.

Remember to:

 Create an I-P-O diagram

 Design UI

 Write Pseudocode

Activity: Speed of light calculator

Your next task is to create a speed of light calculator. The user will input the

number of seconds they want to travel for and the application will calculate

distance travelled. You will need to investigate the “speed of light per second”.

Remember to:

 Create an I-P-O diagram

 Design UI

 Write Pseudocode

60 | P a g e

Selection

Decision making is when you make a selection, like which cake to eat; chocolate or coffee. When

making a decision a criteria or condition is evaluated to help make a choice which option to choose.

IF, ELSE

When programming you often want different code to be run depending on some criteria or

condition. If the condition is met, it is true and the true code block runs, otherwise (else) the

condition is false and the false code block runs. This is called branching.

Pseudocode / Flowchart

Here is a more formal way of writing an IF, ELSE

selection statement.

IF condition is true THEN:

Do true code block

ELSE:

Do false code block

Cake Example:

Criteria / Condition: No cake with coffee in it

So, written in a more formal style:

IF Cake EQUAL TO coffee THEN:

Don’t eat the cake

 ELSE:

Eat the cake

61 | P a g e

C# IF, ELSE structure

if (condition)
{

true code block ;

}
else

{

false code block ;
}

A C# console example:

Condition in () brackets

Code blocks in-between { }

brackets.

Complete each code

statement with a ;

62 | P a g e

Criteria logic

There are different ways to use logic when defining a criteria and this depends on the type of

problem. For example the criteria is “No cake with coffee in it”.

Option 1: If the cake is coffee flavoured do not eat it

Option 2: Eat any cake that is NOT coffee flavoured

Surely they behave the same you are thinking. Let’s investigate…

INPUT Flavour Option 1 True/False OUTPUT

Coffee Equal to coffee True Don’t eat cake

Vanilla Equal to coffee False Eat cake

Chocolate Equal to coffee False Eat cake

Banana Equal to coffee False Eat cake

Coconut Equal to coffee False Eat cake

Lemon Equal to coffee False Eat cake

If coffee is the flavour chosen the true block will execute. Any other flavour and the false block will

be run.

INPUT Flavour Option 2 True/False OUTPUT

Coffee NOT coffee False Don’t eat cake

Vanilla NOT coffee True Eat cake

Chocolate NOT coffee True Eat cake

Banana NOT coffee True Eat cake

Coconut NOT coffee True Eat cake

Lemon NOT coffee True Eat cake

If coffee is the flavour chosen the false block will execute. Any other flavour and the true block will

be run.

So, the same result two different ways. The only flavour you know was chosen is coffee.

What if you wanted to know which flavour was chosen?

 Well, using a simple IF, ELSE statement you can only check for one flavour.

 This is when a CASE statement becomes useful.

63 | P a g e

CASE Statement

A CASE statement allows a variable to be compared to a range of values, whereas an IF, ELSE can

only check one. Each value compared is called a case, hence CASE statement and the variable being

compared is known as a switch. This is why it is called a SWITCH statement in C#.

Advantages of CASE/Switch

 Easier to understand, and therefore easier to maintain

 Easier to debug and check is working correctly for each case

Using this technique a programmer can definitively know when more options have been chosen.

Pseudocode / Flowchart

Here is a more formal way of writing an IF, ELSE selection

statement.

Var USERINPUT

CASE Var OF

Case 1: Case 1 is true

do code block

Case 2: Case 2 is true

do code block

Case 3: Case 3 is true

do code block

ELSE

 All Cases are false, do code block

64 | P a g e

Cake Example:

Criteria / Condition: No cake with coffee in it

cakeFlavour USERINPUT

CASE cakeFlavour OF

 Coffee: OUTPUT “OK, if you must”

Vanilla: OUTPUT “Excellent choice”

Chocolate: OUTPUT “Very tasty”

Lemon: OUTPUT “A connoisseur of cake”

 ELSE

 OUTPUT “We don’t have that type of cake, sorry”

C# Switch /CASE statement

String var = "";
var = Console.ReadLine();

switch (Condition)
{

case "1":
 code block ;

 break;
case "2":
 code block ;

 break;
case "3":
 code block ;

 break;

default:
 code block ;

break;
}

{ } brackets for

the switch code

cases

Condition in () brackets

Code block if case is true

break, stops the rest of the

code executing and then

returns to the program

Code block if all cases are

false

65 | P a g e

A C# console example:

66 | P a g e

Nested if

A nested IF is when an IF statement is placed inside another IF statement, a bit like a Russian doll.

A nested IF statement can be placed in the true or false code block and is a sophisticated branching

technique, allowing a programmer to code for multiple combinations of inputs.

Working out the combination of logic can be confusing and it always worth planning how the

combinations will work in advance of coding.

Pseudocode

In this example the IF statement is only nested in the true block of the first level IF.

Did you notice?

The nested IF true block only runs if BOTH IF statements are true. A nested IF is dependent on the

prior one being true first.

Note: You can nest IF statements much more than once.

IF condition is true THEN:

//First IF condition is true

ELSE:

//First IF condition is false

Do false code block

IF condition is true THEN:

//First IF is true AND nested IF is true

Do true code block

ELSE:

//First IF is true AND nested IF is false

Do false code block

67 | P a g e

Flowchart

Here is an example of a flowchart that describes a nested IF inside the true block of the first level IF.

68 | P a g e

Username and Password Example:

An example of where a nested IF could be used is with a username and password, where the

username must be correct before the password is checked. A user can only log in when BOTH

conditions are found to be true.

username USERINPUT

password USERINPUT

IF username = “cake” THEN:

IF password = “lemon” THEN:

OUTPUT “Username and Password are both correct”

 ELSE:

OUTPUT “Username is correct, password is incorrect”

 ELSE:

OUTPUT “Username is incorrect”

Testing the logic

So lets test different scenarios for the example above.

USERINPUT username = true? password = true? OUTPUT

username = “cheese”
password = “biscuits”

false Not checked Username is incorrect

username = “cake”
password = “biscuits”

true false
Username is correct,
password is incorrect

username = “cheese”
password = “lemon”

false Not checked Username is incorrect

username = “cake”
password = “lemon”

true true
Username and

password are both
correct

As you can see, the password is only checked if the username is correct.

How could you always check the password? (answer on next page)

69 | P a g e

How could you always check the password?

Put another nested IF inside the false block for the first level IF

Username and Password Example:

username USERINPUT

password USERINPUT

IF username = “cake” THEN:

IF password = “lemon” THEN:

OUTPUT “Username & Password are both correct”

 ELSE:

OUTPUT “Username is correct, Password is incorrect”

 ELSE:

IF password = “lemon” THEN:

OUTPUT “Username is incorrect & Password is correct”

 ELSE:

OUTPUT “Username & Password are both incorrect”

Testing the logic

USERINPUT username = true? password = true? OUTPUT

username = “cheese”
password = “biscuits”

false false
Username and

password are both
incorrect

username = “cake”
password = “biscuits”

true false
Username is correct,
password is incorrect

username = “cheese”
password = “lemon”

false true
Username is correct,
password is correct

username = “cake”
password = “lemon”

true true
Username and

password are both
correct

70 | P a g e

C# Nested IF, ELSE structure

if (condition)
{

 if (condition)
{

true code block ;

}
else
{

false code block ;

}

}
else

{
 if (condition)

{

true code block ;

}
else
{

false code block ;
}

}

The example above has an IF statement nested in both the true and false code blocks for the first

level IF statement.

It is up to you whether you need one, both or no nesting.

First IF Condition in () brackets

Code

blocks in-

between

pairs of { }

brackets.

Nested IF Condition in () inside the

true block

Nested IF Condition in () inside the

false block

First level IF

statement

true code

block

First level IF

statement

false code

block

71 | P a g e

A C# console example:

Beware of the brackets! {}

72 | P a g e

Testing the code and logic

73 | P a g e

Activity: Animal age

Your task is to create an animal age calculator. You will need to decide which selection method to

use.

Your program will need to take in two inputs:

 Animal age required

 Human Age

The user will choose from the list which animal age that they want calculating.

One human year is approximately equivalent to:

 3.64 dog years

 3.2 cat years

 1.14 elephant years

 10 Guinea pig years

 20 mouse years

 8.89 rabbit years

Animal age information from: https://www.easycalculation.com/other/fun/Human-years-to-Human-

years.html

https://www.easycalculation.com/other/fun/Human-years-to-Human-years.html
https://www.easycalculation.com/other/fun/Human-years-to-Human-years.html

74 | P a g e

Why use an array

Imagine you have a cake shop and you want to store a list of five cakes. You will need a variable for

each cake; cake1, cake2, cake3, cake4, cake5.

Let’s add the cakes.

It works, but there is quite a lot of code, if you want to add another cake you will need to do quite a

lot of work.

This is where arrays become useful.

Arrays are a more efficient way of storing values, can be changed more easily making your code

easier to work with.

Array

An array is a collection of elements that are all the same type of data. An array is a fixed size and this

must be specified when it is created (initialised).

In the pseudocode example below all the elements are a string type and it has 5 elements:

cake [“coffee”, “vanilla”, “chocolate”, “lemon”, “cheese”]

Remember: Arrays need to be given a suitable name (identifier) that identifies their purpose.

75 | P a g e

Index

An index in a book is used to reference a word and what page it is located. This is similar in arrays;

the index number is used to identify the location of an element or where to add one.

Each element in an array is has an index number starting at 0.

Remember 0 not 1, this is an important programming concept.

Here is an example:

0 1 2 3 4

“coffee” “vanilla” “chocolate” “lemon” “cheese”

C# array structure

Setting up an array

datatype [] arrayName = new datatype [10]

Adding elements to an array

arrayName[indexPosition] = value ;

Type of

data to be

stored

index

Element

[] identifies

an array

stored

name of

the array

Creates the array

of the type needed Number of

elements

required

name of

the array

Index position is the number

where the element is to be added

e.g. 2

The value must match the

datatype of the array

76 | P a g e

C# example

In this example the size of the array is fixed at 5.

Limitations

 There is repetitive code and we programmers hate repeating code.

 The size of the array is fixed, what if the user wants a different number of cakes.

There is a better way but first you must learn about iteration. Look in the FOR loop section to see

how to improve this code.

77 | P a g e

Iteration

The third key programming technique is iteration or repetition. This is often seen as the most

complex technique because you need to work out the logic required.

You may have heard the programming acronym DRY (Don’t Repeat Yourself), we programmers

ideally don’t like to type the same code in more than once. It is quite common that the same code

needs to run again and again, this is called iteration or looping. So using iteration techniques mean

we don’t have to type in the same code again and again and again and again, you get the idea.

There are three main types of iteration; you will need to decide when to use each type:

 FOR ….. a number of times do something

FOR a number of times

Do something

END FOR

 WHILE …..a condition is true do something

WHILE condition is true

 Do something

END WHILE

 REPEAT …….. until a condition is true do something

REPEAT

 Do something

UNTIL condition is true

78 | P a g e

Infinite logic problems

Just before you get into the different types of loop, a word of warning!

The WHILE and REPEAT loops both use a condition, if you get your logic wrong you can create an

infinite loop, which is one that never ends. In fact, it will continue until the computer runs out of

memory or you stop the program.

Infinite example

number 1

WHILE number <= 10 THEN:

 OUTPUT “I’m going loopy”

 number = number -1

 #Continue here when the condition is false

 OUTPUT “I’ve stopped”

LOGIC ERROR

The condition number <= 10 will never be false.

Why?

number = number -1 is counting down each loop, -2, -3, -4 ….. and will never be

greater than 10.

This means that the condition number <= 10 will always be true and will run the

code forever creating an infinite loop.

condition: IF the variable number is less than 10

Run the code

true

79 | P a g e

FOR loop

A for loop needs to know how many times to loop before it starts e.g. the length of a string or array,
a user input.

There is no condition, the loop will repeat a specific number of times and is controlled by a loop
counter variable that is compared to maximum number of iterations needed.

The loop counter can increase in value (increment counter++) or decrease in value (decrement --
counter).

When to use

 If you know how many times you want the code to repeat in total

Examples

 Calculate the first 10 numbers in the times table for a number given by a user

 Find the length of an array, string of text or file and loop through to perform an action

Pseudocode and flowchart

FOR i ← 1 TO 5

OUTPUT i

ENDFOR

this will output: 1, 2, 3, 4 and 5

80 | P a g e

C# FOR loop structure

for (initialise; condition; increment)
{

 code statements ;
}

Pseudocode example:

FOR counter ← 0 TO 9

OUTPUT counter

ENDFOR

A C# console example:

The following program loops 10 times (0 to 9) and outputs the

counter value.

Initialise (setup) the

loop counter variable

Code statements to

repeat are placed

between { } brackets

The condition checks the counter

variable and if true runs the code

statements, otherwise skips the code

block and returns to the main program

Program

OUTPUT

Increment increases

the loop counter

variable, often using

++ which adds 1

81 | P a g e

Activity: Times table

Create a console program to do the 10 times table for a number given by a user

 Ask the user to input a number between 1 and 10

 Output the times table by multiplying the user number by the counter number

 You will need to change the counter start and end values to make it work

Note: Don’t forget to use parse to cast the user input from a string to an integer

Example output:

Times table Extension activity:

Format the output to be the same as below but with the ability for the user to choose the number.

Programming techniques required:

 Variables

 Casting using parse for user input

 String formatting using placeholders

82 | P a g e

A C# console example, with an array using the index:

The following program loops through the cake array, from index position 0 to the length of the array

and outputs the string value for each index position.

Pseudocode:

cake [“coffee”, “vanilla”, “chocolate”, “lemon”, “cheese”]

FOR counter ← 0 TO LEN(cake)

OUTPUT cake[counter]

ENDFOR

C# console code:

A simpler way

C# has a simpler way of looping through items in an array, the FOR EACH loop.

Program OUTPUT

83 | P a g e

FOREACH loop

The FOREACH loop is an easy way to get each element from an array.

 FOREACH ….. item in the array

FOR each item IN myArray

Do something

END FOR

C# FOREACH loop structure

foreach (datatype item in array)
 code statements ;

As you can see it is much simpler to setup.

Limitations

A FOREACH also has its limitations:

 There is no counter variable that can be used

 You cannot control where to start, it always starts at the first item

 You cannot loop through an array in reverse, you can with a standard FOR

The datatype must match

the type of data in the array;

int, string, char etc.

Code statements are NOT

between { } brackets. They

must close with a ;

The item variable will

temporarily store each

item in the array

Name of the array

84 | P a g e

A C# console example, with an array using the index:

Here is the same example used with a standard FOR loop but using FOREACH instead.

Pseudocode:

cake [“coffee”, “vanilla”, “chocolate”, “lemon”]

FOR item IN cake

OUTPUT item

ENDFOR

C# console code:

As you can see, the same result with less code.

Program OUTPUT

85 | P a g e

A C# console example, adding to and displaying an array using the index:

Here is an example of adding items to an array using a FOR loop and displaying the result

Pseudocode:

cake []

OUPUT “Number of cakes: “

arraySize USERINPUT

FOR counter ← 0 TO arraySize

OUTPUT “Enter a cake: “

cake[counter] = USERINPUT

ENDFOR

OUPUT “You entered the following cakes: “

FOR item IN cake

OUTPUT item

ENDFOR

C# console code:

86 | P a g e

Logical Operators

When your programming becomes more advanced you will probably need to work with logical

operators. Here is a quick introduction of AND, OR and NOT.

&& AND

A logical AND returns true when both conditions are true. The operator used in C# is a &&.

Input Logical C# Result Why

a = true
b = true

a AND b a && b true Both a and b are true

a = true
b = false

a AND b a && b false
b is false, so both are

not true

a = 1
b = 10

a >0 AND b <11 a && b true

a = 1, 1>0 = true
b = 10, 10<11 = true

So both conditions are

true

a = 1
b = 12

a >0 OR b <11 a && b false

a = 1, 1>0 = true
b = 10, 10<12 = false

So both conditions are

not true

|| OR

A logical OR returns true if either of the conditions are true. The operator used in C# is a ||.

Input Logical C# Result Why

a = true
b = true

a OR b a || b true Both a and b are true

a = true
b = false

a OR b a || b true
b is false, but a is true so
at least one condition is

true

a = 1
b = 10

a >0 OR b <11 a || b true

a = 1, 1>0 = true
b = 10, 10<11 = true

So both conditions are

true

a = 0
b = 12

a >0 OR b <11 a || b false

a = 0, 0>0 = false
b = 10, 10<12 = false

So neither conditions

are true

87 | P a g e

! NOT

A true condition becomes false and vice versa. The operator used in C# is a !.

Input Logical C# Result Why

a = true NOT a !a false
a is true and becomes

opposite

a = false NOT a !a true
a is false and becomes

opposite

a = true
b = false

a AND !b a && !b true

a is true.
b is false, but becomes

true.

So both conditions are
true

88 | P a g e

WHILE loop

A while loop does not need to know how many times to repeat before it starts, it will decide using a
condition if to run at all and will keep checking this condition before each loop.

You can think of a while loop having an IF statement that is checked at the beginning of a loop
before running the code.

There is a condition at the start of the loop. If the condition isn’t met at the start the loop will not
execute.

When to use

 If you DON’T know how many times you want the code to repeat total

 You only want to run the code if a condition is met

Examples

There are many situations where a while loop can be used

 When you want to keep asking a user for a value until they choose one that is valid

 To add an unknown number of items to an array, with the user deciding when to stop

 Create a menu of options and only stops when a user chooses to quit.

Pseudocode and flowchart

The following is an example of validation and will keep
asking a user for a number between 1 and 10.

number USERINPUT

WHILE number <1 OR number >10

OUTPUT “Enter a number between 1 and 10”

number USERINPUT

ENDWHILE

89 | P a g e

C# WHILE loop structure

while (condition)
{

 code statements ;

}

A C# console example:

The following code will keep asking a user for number between 1 and 10.

Code statements to

repeat are placed

between { } brackets

Code statements only

execute if the

condition is true

90 | P a g e

Pseudocode – MENU Example

The following is an example of a menu and will keep repeating until a user enters 3 to quit. The IF
statement would contain the code required for each option, in this example it just outputs a
message.

choice 0

WHILE number !=3 DO

OUTPUT “MENU”

OUTPUT “1. Do some code”

OUTPUT “2. Do some other code”

OUTPUT “3. Exit program”

OUTPUT “Enter choice: ”

choice USERINPUT

IF (choice = “1”) THEN

 OUTPUT “You chose option 1”

ELSEIF (choice = “2”)

 OUTPUT “You chose option 2”

ELSEIF (choice = “3”)

 OUTPUT “You chose to quit”

ELSE

 OUTPUT “Please choose a valid option. Try again”

ENDIF

ENDWHILE

91 | P a g e

MENU C# console example:

The following code will keep asking a user for number between 1 and 10.

92 | P a g e

REPEAT (do …while) loop

A repeat loop does not need to know how many times to loop before it starts but will always loop
once. It will decide using a condition if to stop after the first loop and will keep checking this
condition after each loop before looping again.

There is a condition at the end of the loop. The loop will always execute at least once.

Note: There is no repeat loop in C# it is called a do...while

When to use

 If you DON’T know how many times you want the code to repeat in total

 But you always want to run the code at least once if a condition is met

Examples

 Display a menu of choices once, keep displaying until close program option is chosen

 Until a correct/valid value within a range is entered

Pseudocode

REPEAT

OUTPUT “Guess an number between 1 and 5: ”

num ← USERINPUT

OUTPUT num

UNTIL num = 5

93 | P a g e

C# DO WHILE loop structure

do
{

 code statements ;

} while (condition);

A C# console example:

Code statements to

repeat are placed

between { } brackets

Code statements only

execute UNTIL if the

condition is true

 Code statements only

execute if the

condition is true

94 | P a g e

Advanced strings and loops

When working with strings, sometimes there is a need to loop through each character to perform a

check or action on it. A typical example would be to see if a character is allowed, like in a username

or password.

Option 1 - Selection

Create an IF, ELSE IF selection structure for each of the characters allowed / not allowed and check

each character in a string using a loop.

Option 2 - Array

Create an array data structure that contains each of the characters allowed / not allowed and check

each character in a string using a loop.

Option 3 – Numerical ASCII value

Convert each character to a numeric ASCII value and compare with the range of numbers allowed.

ASCII Table

Dec Char Description Dec Char Description Dec Char Description

32 space 64 @ At sign 96 ` Grave accent

33 ! exclamation mark 65 A Capital A 97 a Lowercase a

34 " Quotation mark 66 B Capital B 98 b Lowercase b

35 # Number sign 67 C Capital C 99 c Lowercase c

36 $ Dollar sign 68 D Capital D 100 d Lowercase d

37 % Percent sign 69 E Capital E 101 e Lowercase e

38 & Ampersand 70 F Capital F 102 f Lowercase f

39 ' Apostrophe 71 G Capital G 103 g Lowercase g

40 (round brackets or parentheses 72 H Capital H 104 h Lowercase h

41) round brackets or parentheses 73 I Capital I 105 i Lowercase i

42 * Asterisk 74 J Capital J 106 j Lowercase j

43 + Plus sign 75 K Capital K 107 k Lowercase k

44 , Comma 76 L Capital L 108 l Lowercase l

45 - Hyphen 77 M Capital M 109 m Lowercase m

46 . Full stop , dot 78 N Capital N 110 n Lowercase n

47 / Slash 79 O Capital O 111 o Lowercase o

48 0 number zero 80 P Capital P 112 p Lowercase p

49 1 number one 81 Q Capital Q 113 q Lowercase q

50 2 number two 82 R Capital R 114 r Lowercase r

51 3 number three 83 S Capital S 115 s Lowercase s

52 4 number four 84 T Capital T 116 t Lowercase t

53 5 number five 85 U Capital U 117 u Lowercase u

54 6 number six 86 V Capital V 118 v Lowercase v

55 7 number seven 87 W Capital W 119 w Lowercase w

56 8 number eight 88 X Capital X 120 x Lowercase x

57 9 number nine 89 Y Capital Y 121 y Lowercase y

58 : Colon 90 Z Capital Z 122 z Lowercase z

59 ; Semicolon 91 [square brackets or box brackets 123 { curly brackets or braces

60 < Less-than sign 92 \ Backslash 124 | vertical-bar, vbar, vertical line or vertical slash

61 = Equals sign 93] square brackets or box brackets 125 } curly brackets or braces

62 > Greater-than sign ; Inequality 94 ^ Caret or circumflex accent 126 ~ Tilde ; swung dash

63 ? Question mark 95 _ underscore, under strike, underbar or low line

95 | P a g e

Character ASCII value

A variable setup as an int datatype will automatically convert a character into an integer number.

ASCII value to character

A variable setup as a char datatype will automatically convert an integer to a character.

96 | P a g e

C# Example – Username check

A school username is your first initial, surname and year you joined, for example, Joe Bloggs joining

in 2015 is jbloggs15.

The following program loops through a username and checks to see if it only has lowercase letters

from the alphabet and numbers, other symbols are not valid.

It converts each character to the ASCII value and checks if the number is in the correct range of

characters.

Pseudocode

The following is an example of the pseudocode.

username USERINPUT

FOR EACH char IN username

value GetAsciiNum(char)

 IF (value >=48 AND value <=57) OR (value >=98 AND value <=122) THEN

 OUTPUT “char” + “is a Valid character”

 ELSE

 OUTPUT “char” + “is an invalid character”

 ENDIF

ENDFOREACH

97 | P a g e

A C# console example:

Note: here is an alternative way to check a range of values using Enumerable

An enumerable is a set (or range) of positive integers that can be counted one, by one.

98 | P a g e

Subroutines - Creating a program

structure

So far you have been creating programs that are a loosely organised set of

code and have tried to group sections together. Think of this as a routine,

a set of steps, like of a set of steps in a dance.

Subroutines

The way the code has been written so far means, that if you want to do the same task again you

would write the code twice. Hang on a minute, we programmers a lazy, the less typing the better,

remember DRY (Don’t Repeat Yourself) from earlier.

This is where subroutines come in. You can give a block of code a name and use it again and again

and again, without rewriting the code, nice!

A bit like a smaller set of steps in a dance that are repeated, again and again.

Functions vs procedures vs Methods

So far I have been talking about subroutines, you may have heard about functions, procedures

and methods. What is the difference?

Well they are ways of creating subroutines. You know us programmers like to sound clever!

Procedure

A procedure is a type of subroutine that performs a task but does not have to return a value to the

main program. For example:

 Output a list of options or a menu

 Output the list of an array

Function

A function is a type of subroutine that performs a task that always returns a value to the main

program. It is common for a function to perform a calculation. For example:

 Calculate a total from two inputs

99 | P a g e

Method

A method is an alternative way of saying subroutine and can be either a procedure or function.

The C# programming language refers to subroutines as methods.

Methods are part of a style of programming called Object-Oriented; If you continue your

programming journey you will no doubt learn all about this technique.

Naming methods

The following rules are recommended for giving methods an identifier (name):

 Use verbs or verb phrases to name methods.

o ListItems

o GetValue

o CalculateTotal

 Use PascalCase

o Each word used is Capitalized

C# method structure

C# refers to subroutines as methods and there are two basic types

Procedure

A procedure is a type of subroutine that performs a task but does not have to return a value to the

main program.

static void MethodName()
 {

Code statements;

 }

() can be used to pass a value into

the procedure to use

Code statements

are between the { }

Identifier for the

method

Void means that no

value is returned

100 | P a g e

Procedure example:

static void OutputHello()
 {

Console.WriteLine("Hello");

 }

Procedure example with a value:

static void OutputAge(int number)
 {

Console.WriteLine("You input {0}", number);

 }

Procedure Confusion!

Hang on!

A procedure is a type of subroutine that performs a task but does not have to return a value. Surely

the example returns the number!

Nope, there is a subtle difference.

A procedure can output a value, like the number above, but that value is not returned to the main

program to use later in the main program.

In other words, you cannot take the number output to the console and use it as an input to another

calculation or subroutine. This is when functions are used.

int indicates the type of

value required

Identifies the parameter

name available for the code

statements

number is used here

Identifier for the

method

101 | P a g e

Function

A function is a type of subroutine that performs a task that always returns a value to the main

program. It is common for a function to perform a calculation.

static datatype MethodName(datatype parameterName)
 {

//Local variable to be returned
datatype result;

//Do something to produce a result
Code statements;

return result;

 }

As you can see there are quite a few parts to keep an eye on, how about a handy checklist to help:

1 You have a sensible name for the function

2a You know what datatype is needed for the return value e.g. string, int, double

2b You have a local return variable with the same datatype

3a You have a sensible parameter name

3b You have the correct datatype that matches the parameter value being input

4 Your code statements use the correct parameter name(s)

5a You have a return statement

5b The return statement uses the correct local variable

6 You have used the correct syntax

If everything above looks correct, check the logic of your code!

The return key word is

used to indicate which

local variable to return

Datatypes must

match for the local

variable returned

to the main

program

Identifier for

the method

The datatype of the

value to be returned to

the main program

Parameter name available

that stores a value. It can be

used like a variable inside the

function code statements.

Datatype of

the parameter

102 | P a g e

Function example:

The following is a simple function that adds 10 to any age input.

static int CalcFutureAge(int currentAge)
 {

//Local variable
int result;

//Add 10 to value passed into currentAge
parameter
result = currentAge + 10;

//Return result local variable
return result;

 }

Function example with two parameters:

static double CalcArea(double length, double width)

 {
//Local variable
Double totalArea;

//Do something to produce a result
totalArea = length*width;

return totalArea;

 }

103 | P a g e

Calling a method

So far you have seen examples of methods (procedures and functions) but

not how to use them.

Until you ask them to run in the main section any user-defined methods

(ones you have made) will just sit their looking pretty. The next step is to

call them.

I like to think of using a method like asking a friend to do something for you.

But first you have to give them a call.

C# structure

static void MyProcedure()
{

Code statements;
}

static datatype MyFunction(datatype myParam)
{

//Local variable to be returned
datatype result;

//Do something to produce a result
Code statements;

return result;

}

 static void Main(string[] args)
 {

//Global variable to store function result
datatype returnResult;

//Call the procedure to run it
MyProcedure();

 //Call the function to run it
 returnResult = MyFunction(value)

//The return value is stored in a variable for
later use

 }

The value to be used in

the function is input

It must be the correct

datatype

104 | P a g e

Calling a method example

This example calculates an area total using a function and then does it again using the same function

with different input values being passed.

105 | P a g e

Calling a method example

This is the same example, but this time the user is asked to input values and the global variables

used are passed into the function as the arguments into the parameters.

106 | P a g e

Exception handling

An exception is when a problem occurs when the program is running (executing), so the program is

running along fine and then, BAM! a problem occurs.

At this point:

Option A) your program could crash, with a fatal error

Or

Option B) your program can anticipate there might be a problem, catch it and

handle it, no drama, no fuss.

Option B

Option B is the way to go but unfortunately without experience anticipating problems can be

difficult, which is why testing is so important. Testing allows you to find out where exception

handling is needed. A good programmer will try and handle potential problems and in an ideal world

no program would ever crash.

107 | P a g e

try-catch-finally

The try-catch-finally statement controls what happens when an error occurs while your

programming is running.

C# structure

try
{

Try running some code statements;
}

catch (type of error errorMessage)
{

Run these code statements if there is an error
that matches the type;

errorMessage is an optional variable used to
store the message thrown by the program, it is
often shortened to e

}

finally
{

Whatever happens always run these code
statements;

}

Note: There can be more than one catch code block, one for each error type

108 | P a g e

Testing to catch any error

When writing a program is sometimes difficult to know what errors might occur, it is always better

to provide a specific message for a particular type of error if you can.

Here is a way to catch-all errors, whatever the type.

C# structure

try
{

Code statements;
}

catch (Exception e)
{

//Display any error message in the e variable
Console.WriteLine(e);

}

finally
{

Code statements;
}

C# example

In this example there is a divide by zero error:

The error message gives some information that can

be used to improve your code. You can see it is a

DivideByZeroError

109 | P a g e

Handling specific errors

There are many different types of error that can happen, if possible it is better to give specific

feedback to a user so they know what to do next

Common error types

Here are some of the most common errors that you might encounter

System.DivideByZeroException

Handles errors generated from dividing a dividend with zero.

C# example

Here is an example with a user input.

110 | P a g e

System.FormatException

Handles errors generated during casting (changing) data to another format, it is thrown when trying

to perform some type of conversion an invalid type e.g. a string to an integer

C# example

Here is an example with a user input, where a user enters words instead of an integer.

Test for entering “two” as the integer

Test for entering no value

Test for entering “two” as the divisor

111 | P a g e

System.IndexOutOfRangeException

Use when working with an array, it handles errors when an array index out of range.

C# example

This example program asks for five numbers, loops through the input string and converts each

number to an integer, then stores it in the array before doing some division on each number.

112 | P a g e

Testing with too many numbers

Testing with five numbers

113 | P a g e

Robust subroutine code

All of the examples only handle one type of error at time, what you really need is to be able to

handle if any of those errors occur and even unexpected ones.

Combining with functions

Subroutines (functions /procedures) are a very good way to structure your code but ideally they

should also check for errors to make them more robust. Which means it doesn’t crash so easily!

C# example - Output a random number

This example is a procedure that outputs a random number; This could be written in many different,

with input parameters, as a function with a return value, it depend what you are trying to achieve.

Not robust

In this example, a user is asked to input two numbers and a random number is generated and

displayed. But if a user enters a non-number value it will error and crash.

114 | P a g e

Example with correct values input

Example with incorrect values input

Entering ‘five’ causes an exception and the program crashes when the code tries to convert ‘five’

into an integer. Whoops!

115 | P a g e

robust

Again, in this example, a user is asked to input two numbers and a random number is generated and

displayed. This time if a user enters a non-number value the code will handle the exception and the

program won’t crash.

Example with incorrect values

input

116 | P a g e

Still More Robust code

Well it works but stops if a user enters an incorrect value. Often that isn’t enough, you want the user

to keep trying until they enter the correct information.

This is where a while loop can be useful; basically keep going while the user gets it wrong!

Pseudocode:

#A variable is needed to control the WHILE loop

noErrors False

WHILE noErrors NOT EQUAL TO True THEN

TRY:

 #All lines of code to try are listed here

Code…..

Code…..

Code…..

#If there are no errors, the code reaches this point

#success changes to True and while loop stops

 noErrors True

CATCH EXCEPTION:

 #If there are any errors when executing the code

 OUTPUT “There has been an error, try again”

 ENDWHILE

Example with correct values input

Example with incorrect

values input

Wow, it keeps going!

See the code on the next

page.

117 | P a g e

Still more robust code example – While and Try

118 | P a g e

Putting it all together – Complete code example

There is room for improvement in the game, such as adding a scoring system or breaking into further

subroutines. Feel free to experiment and improve.

When coding, one aim is to limit the use of global variables as they have an effect on memory usage.

Another aim is to use subroutines to solve each requirement for the code, this makes the code much

easier to update and maintain.

Number guessing game

The following code is a simple number guessing game; it has a menu of options for a user to choose

from. A user chooses the range of numbers (lower to upper) and then a random number is

generated. The user then tries to guess the correct number.

The code includes validation of menu choice and error handling if an incorrect value type is entered

that cannot be converted into an integer, for example, five instead of 5.

Here is an example of the game working with a simple test.

119 | P a g e

Subroutines

There are a number of self-contained subroutines that are used, each use their own local variables,

which are a much more efficient use of memory.

GetMenuChoice()

 Uses a while loop to validate the menu choice. The code repeats until the user enters a valid

choice.

o Displays the menu of options by calling DisplayMenu()

o Catches an input exception if the user enters a incorrect value

 The int.Parse() will cause an exception error if an incorrect value is entered

that cannot be converted to an integer e.g. two, instead of 2.

 The local variable choice is returned to the main program.

DisplayMenu()

 Displays the menu options and is called from GetMenuChoice()

Getrandom()

 Is called when user chooses to play the game.

 Asks the user to enter a lower and upper range of numbers.

o This is not currently validated to see if the numbers entered are correct i.e. upper is

bigger than lower.

 Uses a while loop to validate the values are integers. The code repeats until the user enters a

valid integer type.

o Catches an input exception if the user enters a incorrect value type e.g. one

hundred, instead of 100

 The local variable randNum is returned to the main program to be passed into

CorrectGuess(randNum, guess)

o Note a local variable needs to be given an initial value, otherwise you will get a

syntax error

o Also, you will get a syntax error if you place the return statement in the wrong place.

 A function should always return a value, for every path in the code. This is

most commonly a problem with IF and WHILE statements. Be careful.

GetGuess()

 Is called when user chooses to play the game.

 Asks the user to enter a guess for the answer.

 Uses a while loop to validate the guess is an integers. The code repeats until the user enters

a valid integer type.

o Catches an input exception if the user enters a incorrect value type

 The local variable guess is returned to the main program to be passed into

CorrectGuess(randNum, guess)

120 | P a g e

CorrectGuess(randNum, guess)

 Is called when user chooses to play the game.

 Compares the two parameter values of randNum and guess.

 If the value match, sets the local variable correct to true and displays a message.

 Otherwise the correct remains as false and an alternative message is displayed.

 The local variable correct is returned to the main program and is used in a while loop in the

main code.

o The while loop repeatedly calls the GetGuess() and CorrectGuess(randNum, guess)

until the return value of correct is true.

Main

This is where all the code is controlled and subroutines are called. This is the key sequence of code

and controls the logic of the program.

Main - Global variables

There are four global variables choice, randNum , guess and correct.

 choice is returned from the GetMenuChoice() subroutine and is used the main while loop

that controls when the game is finished.

 randNum is returned from the GetRandom() subroutine, which generates a random number

for the game.

o The value stored in randNum is passed into the CorrectGuess(randNum, guess)

subroutine to compare with guess.

 guess is returned from the GetGuess() subroutine, which asks a user to input a guess value.

o The value stored in guess is passed into the CorrectGuess(randNum, guess)

subroutine to compare with randNum.

 correct is returned from the CorrectGuess(randNum, guess) subroutine, which is used in a

while loop that repeats until a correct guess has been made.

o Once a correct guess is made the game has finished and the menu is displayed to

see if the user wants to play again.

121 | P a g e

C# Code

Main

122 | P a g e

GetMenuChoice()

DisplayMenu()

123 | P a g e

Getrandom()

124 | P a g e

GetGuess()

125 | P a g e

CorrectGuess(randNum, guess)

126 | P a g e

Resources

Websites

https://www.tutorialspoint.com/csharp/index.htm

https://www.dotnetperls.com/

https://en.m.wikibooks.org/wiki/C_Sharp_Programming

https://stackoverflow.com/

books

C# Programming Yellow Book by Rob Miles, University of hull, free download

Learn C# in one day and learn it well by Jamie Chan; ISBN-13: 978-1518800276

C# 6.0 and the .NET 4.6 Framework by Andrew Troelsen; ISBN-13: 978-1484213339

The C# player’s Guide by RB Whitaker; ISBN-13: 978-0985580131

Video tutorials

C# tutorial by Derek Banas; YouTube

C# Fundamentals for Absolute Beginners by Bob Tabor; Microsoft Virtual Academy

Programming in C# Jump Start by Jerry Nixon and Daren May; Microsoft Virtual Academy

Game development

Monogame, free cross-platform extension using C#

Unity, advanced cross-platform extension using C#

Mobile App development

https://www.xamarin.com/ - cross-platform mobile app development with C#

https://www.tutorialspoint.com/csharp/index.htm
https://www.dotnetperls.com/
https://en.m.wikibooks.org/wiki/C_Sharp_Programming
https://stackoverflow.com/
http://www.csharpcourse.com/
https://www.youtube.com/playlist?list=PLGLfVvz_LVvRX6xK1oi0reKci6ignjdSa
https://mva.microsoft.com/en-US/training-courses/c-fundamentals-for-absolute-beginners-16169?l=Lvld4EQIC_2706218949
https://mva.microsoft.com/en-US/training-courses/programming-in-c-jump-start-14254?l=j0iuozSfB_6900115888
http://www.monogame.net/
https://unity3d.com/
https://www.xamarin.com/

